Competitive effects from an artificial tear solution to protein adsorption

Featured Publications

Hall, B, Jones, L, Forrest, J. Competitive effects from an artificial tear solution to protein adsorption. Optometry and Vision Science. 2015; 92(7):781-789.

 

Purpose

To compare the adsorption of lysozyme, lactoferrin, and albumin to various contact lens materials, between single-protein solutions and a multicomponent artificial tear solution (ATS). Additionally, extra steps were taken to distinguish loosely and tightly bound protein, the latter of which may be fully or partially denatured.

 

Methods

Using a previously described ATS, we measured the time-dependent adsorption of lys, lac, and alb onto one conventional hydrogel and four silicone hydrogel contact lens materials between the first minute and up to 1 week of protein interaction with the material surface. Proteins were quantified using I125radiolabeling of each protein individually in ATS and buffered saline. Extra steps were taken to limit the amount of unbound I125 and to quantify the amount of reversibly bound protein.

 

Results

Comfilcon A, balafilcon A, and etafilcon A did not show any relevant competitive adsorption between the ATS components and lys, lac, or alb until after 1 week. Competitive adsorption effects for lys, lac, and alb were observed in as little as 1 minute on lotrafilcon B. Lotrafilcon B had no reversibly bound protein at any time points. The ionic materials balafilcon A and etafilcon A deposited significant amounts of reversibly bound lysozyme and lactoferrin in just 10 minutes. Senofilcon A apparent deposition was below our thresholds of confidence for this protein quantification method.

 

Conclusions

Both the competition between lys, lac, and alb and ATS components and the reversibility of these bound proteins is material specific. Coadsorption of lys, lac, and alb with ATS components can increase the reversibility of their adsorption.

Download Full Text